Horsenettle (Solanum carolinense) Control With a Field Corn (Zea mays) Weed Management Program1

2002 ◽  
Vol 16 (2) ◽  
pp. 293-300 ◽  
Author(s):  
CORY M. WHALEY ◽  
MARK J. VANGESSEL
1994 ◽  
Vol 8 (3) ◽  
pp. 441-444 ◽  
Author(s):  
Eric P. Prostko ◽  
Joseph Ingerson-Mahar ◽  
Brad A. Majek

Field trials were conducted in New Jersey during 1991 and 1992 to evaluate the efficacy of nicosulfuron, primisulfuron, dicamba, and clopyralid on horsenettle control in field corn. Horsenettle biomass was reduced 74%, 68%, 64%, 61%, 48%, and 40% by primisulfuron + dicamba, primisulfuron, nicosulfuron + dicamba, dicamba, clopyralid, and nicosulfuron, respectively. No treatment was statistically more effective than dicamba. Corn yields were not influenced by the herbicide treatments. Horsenettle populations were not reduced by any treatment.


HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 170-172 ◽  
Author(s):  
Sarah R. Sikkema ◽  
Nader Soltani ◽  
Peter H. Sikkema ◽  
Darren E. Robinson

Pyroxasulfone is an experimental herbicide for use in field corn (Zea mays L.) and soybean that may have potential for weed management in sweet corn. Tolerance of eight sweet corn hybrids to pyroxasulfone applied preemergence (PRE) at rates of 0, 209, and 418 g·ha−1 a.i. were studied at two Ontario locations in 2005 and 2006. Pyroxasulfone applied PRE at 209 and 418 g·ha−1 caused minimal (less than 3%) injury in Harvest Gold, GH2041, GH9589, GSS9299, GG214, GG446, GG763, and GG447 sweet corn hybrids at 7, 14, and 28 days after emergence. Pyroxasulfone applied PRE did not reduce plant height, cob size, or yield of any of the sweet corn hybrids tested in this study. Based on these results, pyroxasulfone applied PRE at the rates evaluated can be safely used for weed management in Harvest Gold, GH2041, GH9589, GSS9299, GG214, GG446, GG763, and GG447 sweet corn.


2017 ◽  
Vol 31 (4) ◽  
pp. 496-502 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
James L. Griffin ◽  
Randall L. Landry ◽  
Brandi C. Woolam ◽  
...  

Field experiments were conducted in Louisiana and Mississippi from 2011 through 2013 to evaluate crop injury, weed control, and yield in field corn following pyroxasulfone applied PRE and POST. Pyroxasulfone PRE or POST did not injure corn at any evaluation. Barnyardgrass control was not improved with the addition of any POST treatment to pyroxasulfone alone or atrazine plus pyroxasulfone PRE; however, all POST treatments increased barnyardgrass control to at least 95% at all evaluations following atrazine PRE. All treatments that contained a PRE followed by POST application controlled browntop millet ≥90% at all evaluations. All POST treatments increased ivyleaf morningglory control to ≥92% following atrazine or pyroxasulfone alone PRE. However, control with atrazine plus pyroxasulfone PRE was similar or greater 28 d after POST than all treatments that received a POST application. In the absence of a POST treatment, pyroxasulfone or atrazine plus pyroxasulfone PRE controlled Palmer amaranth 93 to 96% at all evaluations, but atrazine alone PRE provided 84, 82, and 66% control 7, 14, and 28 d after POST, respectively. All programs that contained a PRE followed by POST herbicide treatment controlled Palmer amaranth >90% at all evaluations. Corn yield following all treatments except atrazine alone PRE and the nontreated were similar and ranged from 10990 to 12330 kg ha−1. This research demonstrated that pyroxasulfone can be a valuable tool for weed management in a corn weed management program.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 110-112 ◽  
Author(s):  
Nader Soltani ◽  
Peter H. Sikkema ◽  
John Zandstra ◽  
John O'Sullivan ◽  
Darren E. Robinson

Topramezone is a newly introduced herbicide for use in field corn (Zea mays L.) that may have potential for weed management in sweet corn. Tolerance of eight sweet corn hybrids to topramezone applied postemergence (POST) at 0, 50, 75, 100, 150, and 300 g a.i. ha− 1 were studied at one Ontario location in 2000 and two locations in 2001 and 2002. Topramezone applied POST at 50, 75, 100, and 150 g·ha− 1 did not cause any visual injury in Calico Belle, CNS 710, Delmonte 2038, FTF 222, FTF 246, GH 2684, Reveille, and Rival sweet corn hybrids at 7 days after treatment (DAT) and caused minimal injury (less than 5%) at 300 g·ha− 1 in all hybrids. The initial sensitivity observed in these hybrids was minimal and transient with no effect on visual injury at 14 and 28 DAT. Topramezone applied POST did not reduce plant height, cob size, or marketable yield of the sweet corn hybrids included in this study. Based on these results, topramezone applied POST at the rates evaluated can be safely applied to Calico Belle, CNS 710, Delmonte 2038, FTF 222, FTF 246, GH 2684, Reveille, and Rival sweet corn.


Crop Science ◽  
1964 ◽  
Vol 4 (4) ◽  
pp. 353-356 ◽  
Author(s):  
C. R. Funk ◽  
J. C. Anderson
Keyword(s):  
Zea Mays ◽  

1990 ◽  
Vol 4 (3) ◽  
pp. 631-634 ◽  
Author(s):  
R. E. Blackshaw

Field studies were conducted in 1987, 1988, and 1989 at Lethbridge, Alberta to determine suitable herbicides for the control of Russian thistle and kochia in field corn grown in a dryland cropping system. Soil-applied atrazine or cyanazine provided inconsistent control of these weeds under dryland conditions. Combining inter-row tillage or 2,4-D applied postemergence with soil-applied atrazine improved the consistency of weed control over years. Postemergence atrazine and dicamba plus 2,4-D controlled Russian thistle and kochia in all years. Corn yields reflected the level of weed control attained with each treatment. The suitability of the various treatments for weed control in corn grown under dryland crop production systems is discussed.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 944-947 ◽  
Author(s):  
Hani Z. Ghosheh ◽  
David L. Holshouser ◽  
James M. Chandler

Experiments were conducted from 1989 to 1991 to determine the critical period of johnsongrass control in field corn. Maximum weed-infested and weed-free periods of 0 to 20 wk after corn emergence were maintained by either hand weeding or nicosulfuron application. Interference duration effects on corn grain yield were not affected by johnsongrass control methods. The critical period for johnsongrass control was determined to be between 3 and 6.5 wk after corn emergence to avoid losses above 5% of yield produced by full-season weed-free corn.


2021 ◽  
Vol 16 (2) ◽  
pp. 215-218
Author(s):  
Banashri Lodh ◽  
S.N. Jena ◽  
R.K. Paikaray ◽  
Manoranjan Satapathy ◽  
Bishnupriya Patra ◽  
...  

2007 ◽  
Vol 6 (6) ◽  
pp. 967-971
Author(s):  
Hassan Muhammad Alizade ◽  
Iraj Nosratti ◽  
Saeed Rasoolzade

1996 ◽  
Vol 10 (4) ◽  
pp. 822-827 ◽  
Author(s):  
C. Dale Monks ◽  
John W. Wilcut ◽  
John S. Richburg ◽  
Joseph H. Hatton ◽  
Michael G. Patterson

Imidazolinone herbicides injure currently available commercial field corn cultivars; however, cultivars resistant to these herbicides have been developed. Sicklepod, Texas panicum, and annual morningglory control using AC 263,222 (36 and 72 g ai/ha), imazethapyr (36 and 72 g ai/ha), or nicosulfuron (35 g ai/ha) applied POST at 2,4, and 6 wk after planting were evaluated in imidazolinone-tolerant corn. Studies were conducted at Attapulgus and Plains, Georgia from 1992 through 1993. Nicosulfuron and AC 263,222 at 72 g/ha controlled Texas panicum at least 87% when applied 2 wk after planting. Imazethapyr did not consistently control Texas panicum or sicklepod, regardless of application rate. AC 263,222 at both rates and nicosulfuron controlled sicklepod at least 86% when applied 2 wk after planting; however, later application or application under dry conditions generally resulted in reduced control. All herbicides controlled the entireleaf and pitted morningglory complex at least 84% when applied 2 wk after planting. Imidazolinone-tolerant corn was tolerant to all herbicides, regardless of rate and timing, and generally yielded greater when weeds were controlled early in the season.


Sign in / Sign up

Export Citation Format

Share Document